71 research outputs found

    Introducing anisotropic tensor to high order variational model for image restoration

    Get PDF
    Second order total variation (SOTV) models have advantages for image restoration over their first order counterparts including their ability to remove the staircase artefact in the restored image. However, such models tend to blur the reconstructed image when discretised for numerical solution [1–5]. To overcome this drawback, we introduce a new tensor weighted second order (TWSO) model for image restoration. Specifically, we develop a novel regulariser for the SOTV model that uses the Frobenius norm of the product of the isotropic SOTV Hessian matrix and an anisotropic tensor. We then adapt the alternating direction method of multipliers (ADMM) to solve the proposed model by breaking down the original problem into several subproblems. All the subproblems have closed-forms and can be solved efficiently. The proposed method is compared with state-of-the-art approaches such as tensor-based anisotropic diffusion, total generalised variation, and Euler's elastica. We validate the proposed TWSO model using extensive experimental results on a large number of images from the Berkeley BSDS500. We also demonstrate that our method effectively reduces both the staircase and blurring effects and outperforms existing approaches for image inpainting and denoising applications

    Unsupervised Texture Segmentation Using Active Contour Model and Oscillating Information

    Get PDF
    Textures often occur in real-world images and may cause considerable difficulties in image segmentation. In order to segment texture images, we propose a new segmentation model that combines image decomposition model and active contour model. The former model is capable of decomposing structural and oscillating components separately from texture image, and the latter model can be used to provide smooth segmentation contour. In detail, we just replace the data term of piecewise constant/smooth approximation in CCV (convex Chan-Vese) model with that of image decomposition model-VO (Vese-Osher). Therefore, our proposed model can estimate both structural and oscillating components of texture images as well as segment textures simultaneously. In addition, we design fast Split-Bregman algorithm for our proposed model. Finally, the performance of our method is demonstrated by segmenting some synthetic and real texture images

    Speckle noise removal convex method using higher-order curvature variation

    Get PDF

    Active Contour Model Coupling with Higher Order Diffusion for Medical Image Segmentation

    Get PDF
    Active contour models are very popular in image segmentation. Different features such as mean gray and variance are selected for different purpose. But for image with intensity inhomogeneities, there are no features for segmentation using the active contour model. The images with intensity inhomogeneities often occurred in real world especially in medical images. To deal with the difficulties raised in image segmentation with intensity inhomogeneities, a new active contour model with higher-order diffusion method is proposed. With the addition of gradient and Laplace information, the active contour model can converge to the edge of the image even with the intensity inhomogeneities. Because of the introduction of Laplace information, the difference scheme becomes more difficult. To enhance the efficiency of the segmentation, the fast Split Bregman algorithm is designed for the segmentation implementation. The performance of our method is demonstrated through numerical experiments of some medical image segmentations with intensity inhomogeneities

    Active Contour Model for Ultrasound Images with Rayleigh Distribution

    Get PDF
    Ultrasound images are often corrupted by multiplicative noises with Rayleigh distribution. The noises are strong and often called speckle noise, so segmentation is a hard work with this kind of noises. In this paper, we incorporate multiplicative noise removing model into active contour model for ultrasound images segmentation. To model gray level behavior of ultrasound images, the classic Rayleigh probability distribution is considered. Our model can segment the noisy ultrasound images very well. Finally, a fast method called Split-Bregman method is used for the easy implementation of segmentation. Experiments on a variety of synthetic and real ultrasound images validate the performance of our method

    Dynamical equations of multibody systems on Lie groups

    No full text
    The Euler–Poinaré principle is a reduced Hamilton’s principle under Lie group framework. In this article, it is applied to derive a hybrid set of dynamical equations of rigid multibody systems, which include four parts: the classical Euler–Lagrange equations of rigid bodies in their translational coordinates of mass center; Euler–Poinaré equations via orientation matrices and their related angular velocities; the constraint equations due to different joints in Cartesian coordinates and Lie groups; and the reconstruction equations between special orthogonal groups and their Lie algebras. The generalized mass matrices of dynamical equations are constant, which is computationally efficient. All the equations can be constructed systematically and can be solved easily. The construction equations can be used to design Lie group integrators of multibody system dynamics. The procedure presented in this article can be extended easily to flexible multibody systems, systems with non-holonomic constraints, and so on

    Higher Order Variational Integrators for Multibody System Dynamics with Constraints

    No full text
    The continuous and discrete Euler-Lagrangian equations with holonomic constraints are presented based on continuous and discrete Hamiltonian Principle. Using Lagrangian polynomial to interpolate state variables and Gauss quadrature formula to approximate Hamiltonian action integral, the higher order variational Galerkin integrators for multibody system dynamics with constraints and the computation procedure are given. Numerical examples are provided to show the long-time behavior of the methods proposed in this paper via comparisons with traditional Runge-Kutta methods
    • …
    corecore